CAN and Multiplexing

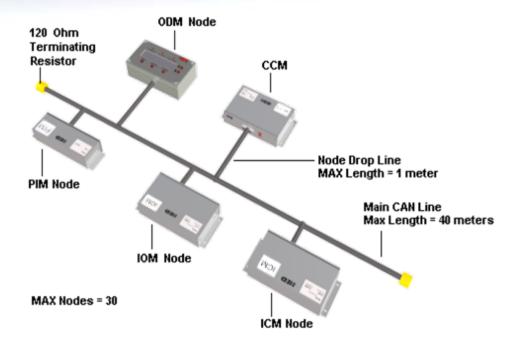
CAN and Multiplexing

- Summarize CAN multiplexing history & origins
- Explain CAN technology
- Explain CAN benefits

CAN stands for <u>Controller</u> <u>Area</u> <u>Network</u>

 Definition: Serial bus communication for real-time control application.

- CAN is a communication across a pair of wires to different nodes/microprocessors
- Messages on the CAN bus do not carry addresses, only identifiers
- Every node sees every message on the CAN bus
- CAN is a differential signal on two wires

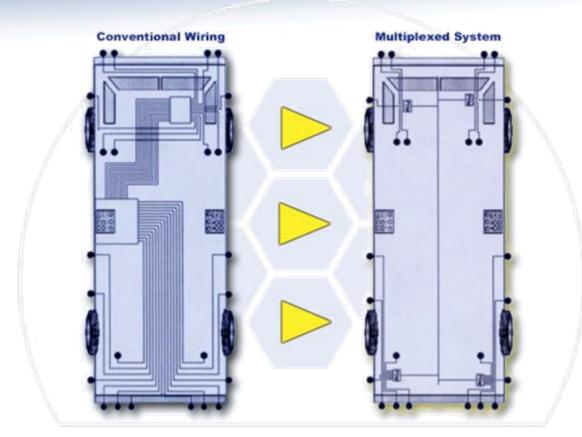


- CAN (Controller Area Network) was created by Robert Bosch Gmbh in mid 1980's
- Version 1.2 had 11 bit identifiers
- Version 2.0B released Sept. 1991 provided for 11 bit and 29 bit identifiers
- Base patent still held by Bosch

- 1983 Developed by Bosch
- 1987 First CAN chips by Intel & Philips
- 1992 CAN is introduce to automation
- 1992 First car with CAN (Mercedes Benz)
- 1994 SAE J1939 released
- 1995 ISO 11898 is released

Where is CAN used?

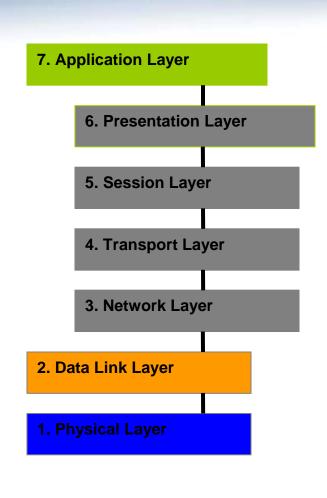
General Applications


- Cars
- Packaging equipment
- Medical systems
- Photo copiers
- Marine controls and navigation systems
- Elevator controls

HED examples

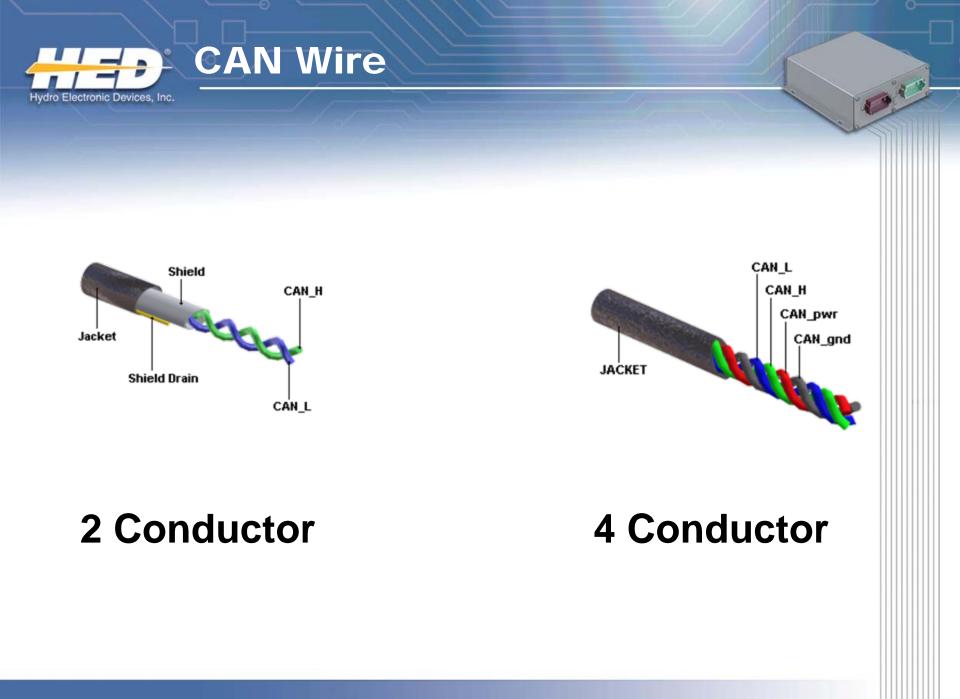
- Military vehicles
- Agriculture machinery
- Construction equipment
- On and off highway equipment

CAN application

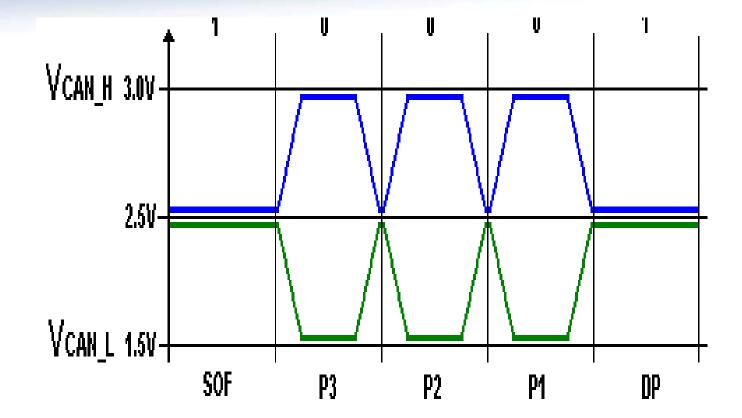

0

- Communication rate is 250Kbits/second-J1939
 - CAN max is 2Mbits/second
- 11 or 29 bit identifier
 - CANOpen is only 11 bit identifier
 - CAN 2.0 is backward compatible
- 120 ohm terminating resistors

- We are interested:
 - Physical
 - Data Link
 - Application
- All the layers together make up the OSI (open system interconnect)



CAN standardization


Application Profile			CANopen application profiles	
Device Profile		DeviceNet device profiles	CANopen device profiles	SAE J1939 -based application profiles
Application Layer	SDS EN 50325-3	DeviceNet EN 50325-2	CANopen EN 50325-4	
Data Link Layer	ISO 11898-1 (11-bit ID)		ISO 11898-1 (11-bit <i>and</i> 29-bit ID)	ISO 11898-1 (29-bit ID)
Physical Layer	ISO 11898-2			ISO 11898-2

- Consist of the hardware needed to communicate from node to node
 - Physical/driver chip
 - Converts 1's & 0's to differential voltage
 - Twisted pair of wire
 - Connectors

- The layer that defines data, remote, error, and overload frames.
- Layer that turns the data into raw bits
- Also part of the error detection

Bit Monitoring

 Any node automatically monitors and compares the actual bit level on the bus with the level that it transmitted. If the two are not the same, a bit error is flagged.

Stuff Error

 If five consecutive identical bit levels have been transmitted, the transmitter will automatically inject (stuff) a bit of opposite polarity into the bit stream. The receive node will automatically de-stuff.

Cyclic Redundancy Check Field (CRC)

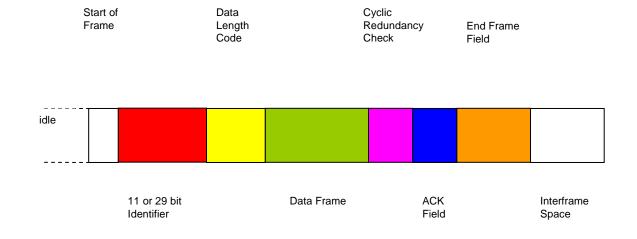
- Every message transmitted contains a 15 bit CRC code. If the receivers calculate a different CRC, a error flag is raised.
- Form Error
 - Violation of fixed format Bit fields
- Acknowledge Error (ACK)
 - If a node determines a message has not been ACKnowledged then the ACK error is flagged.

The application layer is the communication layer of the OSI.

Performs common end user services
HED application code

- J1939
 - Diesel engines, busses, fire trucks, cranes, etc...
- CAN Kingdom
- CANOpen
 - Used in Europe especially Germany
- DeviceNet
 - Used in USA and Asia for PLC controllers
- Proprietary
 - HED

HLP history

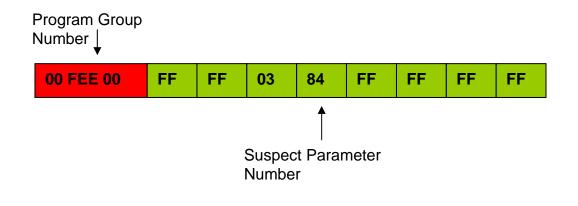

HLP = Higher-layer protocol

- 1991: CAN Kingdom
- 1992: CAN Application Layer (CiA 20X series)
- 1994: Smart Distributed System (IEC 62026, EN 50325)
- 1994: DeviceNet (IEC 62026, EN 50325)
- 1994: Truck and bus (SAE J1939, ISO 11898)
- 1995: CANopen (CiA 301, EN 50325)
- 1997: OSEK-COM/NM (ISO 17356 series)
- 1999: Truck/trailer (ISO 11992-1/-2/-3)
- 2001: Diagnostics on CAN (ISO 15765)
 - 2002: ISOBUS (ISO 11783 series)
 - 2006: Re-creation vehicle CAN (CiA 501/2)

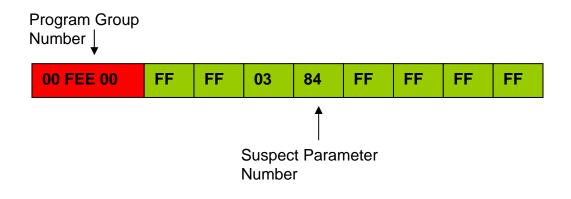
Full CAN message scheme:

What we are interested in:

11 or 29 bit Identifier


0-8 bytes Data Frame

Program Group Number (pgn) 6	65262 – Engine Temperature 1 – ET1			
Transmission rate:	1 sec			
Data Length:	8 bytes			
Data Page:	0			
PDU Format:	254			
PDU Specific:	238			
Default Priority:	6			
Parameter Group Number:	65262 (00FEEE hex)			
Bit Start	Suspect Parameter Number			
Position Bytes Length	SPN Description	SPN		
1 1 byte	Engine Coolant Temperature	110		
2 1 byte	Fuel Temperature	174		
3-4 2 bytes	Engine Oil Temperature 1	175		
5-6 2 bytes	Turbo Oil Temperature	176		
7 1 byte	Engine Intercooler Temperature	52		
8 1 byte	Engine Intercooler Thermostat Opening	1134		



- Suspect Parameter Number 175 Engine Oil Temperature 1
- Data Length: 2 bytes
 Resolution: 0.03125 deg C/bit, -273 deg C offset
 Data Range -273 to 1735 deg C
 Type: Measured
 Suspect Parameter Number: 175
- Parameter Group Number: [65262]

As the engine oil temperature changes, then bytes 3 & 4 change to show the value in HEX.

- SAE (Society of Automobile Engineers)
- CiA (CAN in Automation)
- ODVA (DeviceNet)

- Industry proven
- Bit collision detection and handling
- Cost saving
- Diagnostics for multiple module systems
- EMI/RFI

Check these websites for more information

- www.sae.org
- www.can-cia.org
- www.hedonline.com
- HED papers

- Large Scale Applications of J-1939 CAN

- Summarize CAN multiplexing history & origins
- Explain CAN technology
- Explain CAN benefits