

Realize Your Vision with Intelligent Control Featuring the HED CanLink[™] Control System

ARG-IN VIEW

HED - The Controls Company

HED specializes in electronic control systems for mobile vehicles. Located in Hartford, Wisconsin, we provide all your electronic control requirements from single components through complete networked control systems. We operate as an extension of our customers' engineering department, providing support as needed to make their vision a reality.

What this Applications Guide is about.

Our customers are experts in their product lines: mobile vehicles for off-highway and on-highway use. Increasingly, mobile vehicles are designed to task-specific requirements involving complex functionality of transmissions and specialized tools. Electronic control systems can help those applications perform better, at lower cost, by eliminating complex wiring, mechanical linkages and hydraulic conduit. Helping engineers understand the promise and the potential of this technology is our core competency!

This guide is a quick look at what's available, what's possible, and how HED can make it happen.

The Medtec ambulance is equiped with an advanced electrical system that puts a wide range of data at the fingertips of personnel throughout the vehicle.

Electronic Controls

Complex machines require complex controls. Control systems that use traditional hydraulic conduit and mechanical linkages can quickly get out-of-hand. Electronics offer a way to simplify control while actually offering greater precision for specific tasks. Benefits include:

Simplicity

Instead of routing hydraulic conduit to the operator station and then to the tool, hydraulics only need to go from the power source to the tool. This allows for a smaller, easier-to-use operator station and cost savings, especially when the operator is located some distance from the tool.

Reliability / Ergonomics

Leak-prone hydraulics are minimized and replaced with shock-resistant, ruggedized electronics. Electronic input devices are smaller, require less operator effort, and generate less heat, increasing cab space and comfort and reducing operator fatigue.

Intelligence/Safety

You can prevent dangerous situations with safety interlock logic, activate alarms and involve multiple vehicle systems simultaneously to perform a specialized task. Solid state electronics eliminate relay logic and fuses, while enhancing safety and performance by optimizing simultaneous operation of multiple vehicle functions.

Extended Component Life

By controlling transmission shift patterns, component duty cycles, and programming "soft limits" when components near their maximum range, electronic control minimizes wear and tear and abusive vehicle operation, thus maximizing service life.

Programmable

HED offers customers the option to use Windows-compatible software to create, adjust or completely re-engineer the control programming. This gives the customer ultimate control over vehicle function, and allows infinite opportunities for differentiation of a single basic design.

Faster New Product Development (NPD) Timelines

Engineers can move from drawing board to prototype and production more quickly when electronics are involved. Hardware components can be tested and validated along with overall vehicle design, with control systems moving on a parallel path. That allows engineers to quickly exploit windows of opportunity, and use a basic vehicle design for multiple purposes with different add-on accessories. Typical IED Electronic Control Unit

Multiplexing

Even though electronic controls tend to be simpler than hydraulic or mechanical linkage controls, the number of wires involved can quickly add up. Multiplexing allows control of multiple functions through a single pair of wires, eliminating the need for complex wiring harnesses.

Multiplexing allows you to distribute electronic control judiciously to various quadrants or input/output concentration areas on your vehicle, coordinating electronic sensors and operator inputs with output devices and actuators using computer logic.

22, or more nodes can dramatically reduce wireing complexity by placing control modules close to sensor inputs and control devices, connecting modules through the CAN bus.

Engine Control

Communications with Engine Control Modules (ECM), enables task-based control of engine operating/idle speed. In addition, you can monitor engine conditions (overheating, transmission status, etc) from the operator station and automatically control vehicle load conditions to prevent engine stall.

Multi-Station Control

Multiplexing simplifies control of vehicle or tool operation from multiple points on the vehicle: from the operator's cab, from a station near the tool, or even remotely (off-vehicle) through a wired or wireless connection.

Self-diagnosis and reporting

Multiplexing simplifies the hardware / software interface and makes it easier to locate problems and alert operators. In addition to built-in diagnostic capabilities, HED multiplexing can check the entire network from a single module, using Windows-based software.

More and easier to read information is available to operators through graphical displays, and cab display and instrument cluster wiring is reduced by multipleying

Multiplexing allows for complex vehicle design while minimizing the need for slip rings

The bottom line

HED multiplexing, the CANLink[™] system, is designed for survivability under extreme and hostile environments. Multiplexing means lower costs, fewer wires to break, faster speed-to-market and simplified troubleshooting in the field. Plus, the HED CANLink[™] products offer maximum protection from high EMI/RFI exposure, extreme vibration and temperatures, dirt, dust, moisture and hard equipment wash-downs.

Typical multiplexing applications on a mobile vehicle

These are places where you will find HED CANLinkTM components:

Power System

Typical inputs: resistive, pressure and temperature sensors, speed pickups and electronic engine or transmission communications.

Typical outputs: servo valve pump control, starter solenoids, throttle servos, and electronic engine or transmission communications.

- Access vehicle ECM
- Log data for maintenance and troubleshooting
- Match power curve to specific vocational requirements

Valve Banks

Typical inputs: resistive, pressure and temperature sensors.

Typical outputs: servo valve pump control, proportional valves, on/off valves.

- Reduce leak-prone hydraulic connections, cut costs
- Add proportional PWM controls for improved performance

Remotes and Communication

Typical inputs: modem connections, GPS inputs and remote controls.

- Allows remote control of any multiplexed function
- Wired or wireless operation, on-vehicle or off-vehicle
- Allows fast and even remote access to vehicle diagnostics and maintenance records for simplified fleet management

Console/Dash

Typical Inputs: joysticks, dash switches, potentiometers, operator presence switches.

Typical Outputs: gauges, displays, LEDs, indicator lights, alarms.

- Simplify operator controls, eliminate hydraulics, linkages
- Centralize vehicle data and controls

Booms and Lifts

Typical inputs: angle sensors, pressure sensors, and position sensors.

Typical outputs: displays, alarms, limit controls.

- Cut costs by eliminating multiple slip-rings
- Multiple levels of RCL/LMI safety and control
- Centralized operator display, integration with actuators

Lights and Outriggers

Typical outputs: lights, valves, relays and alarms.

• Eliminate wiring harnesses and relays

Vehicle Applications

CAN Multiplexing Offers Increased Performance, Added Flexibility, Reduced Development Time, and Lower Lifetime Vehicle Ownership Cost

- Reduce wiring complexity and cost
- Easily add production or aftermarket options while keeping base unit cost low
- · Quickly introduce new vehicle features with little or no hardware modifications
- Locate I/O modules close to the source
- Simplify vehicle troubleshooting

Fire Aerial Ladder Application

The number of wires exiting a fire truck cab can number in the hundreds without the use of CAN multiplexing technology. The reduction in vehicle wiring cost and field service troubleshooting time alone can easily pay for the cost of the multiplexing system.

Aerial Work Platform Application

For aerial work platform applications, multiplexing can easily accommodate multiple operator stations in the platform or on the ground, using wired or wireless remote controls. The system could control platform rotation, hydrostatic transmission and as well as outrigger operation, including safety interlock logic to prevent dangerous operating conditions while providing smooth, precise work platform positioning. Simplified wiring can also reduce the amount of slip rings required to route control circuitry through the swing drive.

nation control can be accomplished easily using multiplex wiring through the boom or wireless control modules

Vehicle Applications

Road Building Machine

Road building vehicles such as recyclers and skid-steer loaders are often offered with a multitude of variations or attachments. Multiplexing systems allow the pre-wiring for these options for addition of control module hardware only as needed to implement the options. The software for additional options can be included on the base unit and options or attachments can be automatically recognized when added on the production line or by the dealer or end user. The use of identification pins in the wiring harness can also allow identical control modules to function completely differently depending on where it is mounted on the vehicle and what job it is required to do in that location.

in the cab provide operating data, diagnostics, and even video input from cameras used for vehicle positioning.

Windows-based programming expands the capabilities of CANLink[™]

CANLink[™] modules can be programmed at HED and shipped ready for your single application, or they may be programmed by your own design team. This allows designers to give vehicles different performance characteristics for different applications without changing the basic production hardware components. The benefits include simplified design, reduced inventory and the ability to quickly deliver customer-specific products.

Do-It-Yourself Windows-Based Software Programming Tool CANUERLIN Company

 $\mathsf{CANLink}^{{}^{\mathrm{\scriptscriptstyle M}}} \; \mathsf{Composer}$

CANLink Disconstic Tool
Project: M.R Companies Broom Created: 1/26/2006 10:01:37 AM.

This easy-to-use software requires no programming language knowledge to generate complete vehicle control programs. Whether your system uses a single stand alone module or a multiplex system, you can create new or modify existing control programming as dictated by your customer requirements, providing you with greater control, flexibility, and responsiveness. The program uses simple ladder logic to construct even the most complex functions, and a complete contextual help function is available at every step.

Do-It-Yourself programming tool is easy to use. Windows-based, and places electronic vehicle control at your command.

INPUTS				-		OUTPUTS						-	
iew/Sort	Al		×			View/Sort 4							
lane			Value	Units	^	Name		Value	Units	Cur Fdbk		Status	FI A
ROOM_TACK	HOMETER_F	REQ_INPUT	0			BROOM_UP_OUTPUT		0		0	mA	Nomal	
ROOM PAT	TERN ANALI	OG_INPUT	3394			EROOM_DOWN_OUTPUT		0		0	mA	Nomal	
ROOM PRES	SSURE_ANA	LOG_INPUT	3353			BROOM_LEFT_OUTPUT		0		0	mA	Nomal	
LOWER_PRI	ESSURE_AN	ALOG_INPUT	3423			EROOM_RIGHT_OUTPUT		0		0	mA	Nomal	
ONTROL_PF	ESSURE_A	VALOG_INPUT	3382			ENGINE_COOLING_FAN_	DUTPUT	100		10	mA	0	
EIGHT_TRA	NSFER_PRE	SSURE_ANALOG	IN 2			WEIGHT_TRANSFER_OU	TPUT	100		17	mA	0	
ANUAL_BRO	DOM_DOWN	INPUT	OFF			ENGINE_IGNITION_OUTF	UT	ON		17	mA	0	
ANUAL_BRO	IOM_UP_INF	UT	OFF		-	HYD_UNLOADER_OUTPI	π.	OFF		0	mA	Nomal	
ROOM_DOW	N_UMIT_SV	VITCH	ON			HOOD_STOW_OUTPUT		OFF		0	mA	Nomal	
OW/ OIL LEY	/EL_INPUT		OFF			HOOD_LIFT_OUTPUT		OFF		0	mA	Nomal	
DD_SENSOF	UNPUT		OFF			NOZZLE_LEFT_OUTPUT		OFF		0	mA	Nomal	
CHASSIS_REVERSE_INPUT			OFF			NOZZLE_RIGHT_OUTPU	1	OFF		0	mA	Nomal	
TRAILER_ABS_LIGHT_INPUT			OFF			DUCT_LIFT_OUTPUT		OFF		0	mA	Nomal	
ATTERN IN	CREASE_INF	TUP	OFF			DUCT_LOWER_OUTPUT		OFF		0	mΑ	Nomal	
PATTERN_DECREASE_INPUT			OFF			DEFLECTOR_UP_OUTPU	ť	OFF		0	mΑ	Nomal	
ND_OIL_TEN	4P_RTD_INF	τυr	4094			DEFLECTOR_DOWN_OU	(PUT	OFF		0	mΑ	Nomal	
IVE_VOLT_S	UPPLY_1_A	VALOG_INPUT	2063			AUX_POWER_OUTPUT		ON		170	mA	0	
ME_VOLT_S	UPPLY_2_A	VALOG_INPUT	2046			WORK_LIGHT_REAR_LE	T_OUTPUT	OFF		0	mA	Nomal	
ATTERY_AN	ALOG_INPU	T T	1423			WORK_LIGHT_REAR_RI	HT_OUTPUT	OFF		0	mA	Nomal	
ND_FILTER	RESTRICTIO	DN_INPUT	OFF			ENGINE_START_OUTPU	1	OFF		0	mA	Nomal	
ADDULE_0_P	NPUT_20		Disabled			VIBRATOR OUTPUT		OFF		0	mA.	Nomal	×
Madadaa			Disabled	_	~	<						-	>
Modules			2 Variable										
lame	Status	CAN Status											
aster	Running	OK.	View/Sort	AI	-								
L411	Running	OK.			_								
ab Display	Running	OK.	Name			Value Desc	intion						
ear Display	Running	OK.	AUTO MODE	STATUS		0 birl	att 1 Flicter 11 (P 11 -	num I Sanach	ed.				_
witch Panel	Running	OK.	Switch St	ATHS	,	0 bir	Ro. In such a	Ander 1 OLEMANA	04				
			CONTROL			4096 bits	up I. Ma L IR I. Mer	LAuto I Divo L	DAte UNIP U	dates 13/8-110e	-18k1	Put Prec	- H
			DISPLAY CO	NTROL		4096 541	up I. Ma L. UR I. Juhr	LAuto Dhup	Dide Like Li	dates 13/25 Liller	101	PartProc	
			CONTROL 2			23000 have	all Can I St I St	ISTALL ALL R.	UDAIL &	Each I Each I	Salte 11	ally During 1	
			DISPLAY CONTROL 2		22792 bar	11114114	Each Each	WHO IT	ally Durits				
			ALADAS	annut		0 blue /	Contract Still Ste	INT LADO	Conduct Law	ril Coolest Te	WICI'	(Pressore)	
			HVDRAULIC	OIL TEM	DEDATI	0 000	a severi riyo nater	1W/1 (ADS1)	COOKS'S LEV	eri cookark i e	mpiu	a mediture	
				OF LEM	r LnATU	16 U							
			I DECEMBER OF	the second second		2,00001 1000							

Diagnostic Tool for On-Board or Remote Troubleshooting

CANLink[™] Conductor

A powerful tool to identify and troubleshoot vehicle performance issues or electrical circuit faults. Pinpoints errors and dramatically reduces troubleshooting and wire tracing time for fast, reliable customer service. Unique real-time "Debug" feature

allows service technician to bypass normal control logic and force operation of inputs and outputs to help identify the source of system faults. Available in read-only and full functional versions.

NPUTS						🗢 OUTPUTS											
						View/Sort Al											
me		Value	Units	~	Name				Value	Units	Cur Fdbk		Status	Flash A			
DOM_TACHOMETER_F	REQ_INPUT	0		711	BROOM	UP_OUTPUT			0		0	mA	Normal				
DOM_PATTERN_AN	ALOG_INPUT	3394			BROOM	DOWN_OUTPU	Т		0		0	mA	Normal				
IOOM_PRESSURE_ANALOG_INPUT 3354					BROOM	LEFT_OUTPUT	0		0	mA	Normal						
OWER_PRESSURE_ANALOG_INPUT 3423				11	BROOM	RIGHT_OUTPU		0		0	mA	Normal					
NTROL_PRESSURE_ANALOG_INPUT 3381					ENGINE_COOLING_FAN_OUTPUT 100						18	mA	0				
JUHI INANSPER PRESSURE ANALUG IN. 2					WEIGHT	THANSFER	-001	PUT	100		17	mA	0				
ANUAL BROOM UP INPUT				- 11	LINGINE LINE	OADER OUTE	117		OFF		0	max.	Manual				
ROM DOWN LIMIT SWITCH ON					HODD STOW DUTPUT						0	mA.	Normal				
W OIL LEVEL INPUT OFF					HOOD LIFT DUTPUT OFF						0	mA	Nomal				
DD_SENSOPLINPUT OFF					NOZZLE LEFT_OUTPUT OFF						0	mA	Nomal				
HAŠSIS_REVĒRSE_INPUT OFF				NOZZLE RIGHT OUTPUT OFF						0	mA	Normal					
LER_ABS_LIGHT_INF	UT	OFF			DUCT_U	FT_OUTPUT			OFF		0	mA	Normal				
TERN_INCREASE_INF	UT	OFF			DUCT_LC	/WER_OUTPUT			OFF		0	mA	Normal				
TERN_DECREASE_IN	PUT	OFF			DEFLECT	OR_UP_OUTP	JT		OFF		0	mA	Normal				
OIL_TEMP_RTD_INF	UT	4034			DEFLECT	OR_DOWN_OL	ITPUT		OFF		0	mA	Normal				
VULT SUPPLY 1 P	An an and all and										1/0	mA	U.				
VULL SUPPLY 2 A	N MUCH-ARW										0	max.	Noma				
DI TER RESTRICT									0	mA.	Normal						
ULE D INPUT 20			51	IOP-N	- Multi-View						0	mA.	Nomal				
ULE_0_INPUT_21					110011001									3			
	Name			0.	000.0	OvEda	_	Claibar	Del I			_		_			
	CARDOOM DAT	TEDM ANAL	OG INPUT	226	M	CO POR		31004	T LOT								
	DARGON PRI	COUNCE AND	ALCO INDUT	200													
	Contraction Parts	221/11/2014	ALUG_NPUT	3.6	-												
	MANUAL_BRO	JUM_DOWN	UNPUT	OFF		10	-										
	WEIGHT_TRA	WSFER_OL	JTPUT	100)	17	mA	0									
HOOD_STOW_OUTPUT OF				OF	F	0	mΑ	Nomal									
	NOZZLE_RIG	HT_OUTPU	т	OFF	F	0	mA	Nomal									
									_								
	E Charlend - Ress of																

Device Calibration Tool

CANLink™ Tuner

This convenient tool allows calibration of signal ranges for individual proportional inputs and outputs on your vehicle for smoother, more precise control performance. Whether for installing input or output devices at the end of the production line or for service replacements in the field, your control programming can adjust for sensor or actuator signal range tolerances.

HED is located in Hartford, Wisconsin, and provides a total subsystem

solution: Engineering is provided by our own staff of highly-qualified engineers with years of experience working on many applications. We maintain an ever-growing library of circuit designs and software programs, for cost-effective custom and semi-custom product offerings. Manufacturing is completed in our own ISO 9000-2001 certified facility. We also provide field service and rebuilding.

1715A Innovation Way Hartford, Wisconsin 53027 (262) 673-9450 Toll Free 800 398-2224 Fax (262) 673-9455 www.hedonline.com

Need Form Number © date Production code for document

e-mail: info@hedonline.com